Hp-dgfem for Partial Diierential Equations with Nonnegative Characteristic Form
نویسنده
چکیده
We develop the error analysis for the hp-version of a discontinuous nite element approximation to second-order partial diierential equations with non-negative characteristic form. This class of equations includes classical examples of second-order elliptic and parabolic equations, rst-order hyperbolic equations , as well as equations of mixed type. We establish an a priori error bound for the method which is of optimal order in the mesh size h and 1 order less than optimal in the polynomial degree p. In the particular case of a rst-order hyperbolic equation the error bound is optimal in h and 1=2 an order less than optimal in p.
منابع مشابه
Hp-finite Element Methods for Hyperbolic Problems A
This paper is devoted to the a priori and a posteriori error analysis of the hp-version of the discontinuous Galerkin nite element method for partial differential equations of hyperbolic and nearly-hyperbolic character. We consider second-order partial diierential equations with nonnegative characteristic form, a large class of equations which includes convection-dominated diiusion problems , d...
متن کاملHp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems
We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...
متن کاملhp-Version Discontinuous Galerkin Finite Element Method for Semilinear Parabolic Problems
We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...
متن کاملDiscontinuous Galerkin methods on hp-anisotropic meshes I: a priori error analysis
We consider the a priori error analysis of hp-version interior penalty discontinuous Galerkin methods for second–order partial differential equations with nonnegative characteristic form under weak assumptions on the mesh design and the local finite element spaces employed. In particular, we prove a priori hp-error bounds for linear target functionals of the solution, on (possibly) anisotropic ...
متن کاملOptimal Error Estimates for the hp–Version Interior Penalty Discontinuous Galerkin Finite Element Method
We consider the hp-version interior penalty discontinuous Galerkin finite element method (hp-DGFEM) for second-order linear reaction-diffusion equations. To the best of our knowledge, the sharpest known error bounds for the hp-DGFEM are due to Riviére, Wheeler and Girault [8] and due to Houston, Schwab and Süli [5] which are optimal with respect to the meshsize h but suboptimal with respect to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000